ISSN 2456-0235

International Journal of Modern Science and Technology

INDEXED IN 

​​​​​​​January 2020, Vol. 5, No. 1, pp. 1-6. 

​​On the significance of the Hahn-Banach theorem based on its historical background, formulation, implications, applications, and contributions

Amos Otieno Wanjara
School of Mathematics, Statistics, and Actuarial Science, Maseno University, Maseno, Kisumu, Kenya.

​​*Corresponding author’s e-mail: awanjara78@gmail.com

Abstract

It is known that without the Hahn-Banach theorem, functional analysis would be very different from the structure we know today. Among other things, it has proved to be very appropriate form of the axiom of choice for analysts. In its elegance and power, the Hahn-Banach theorem is a favorite of almost every analyst. Its principal formulations are as a dominated extension theorem and as a separation theorem. In this paper we give an overview of the significance of the Hahn-Banach theorem to Analysis based on its historical background, formulation, implications, applications, significance and importance to Analysis and its contributions after discovery.

Keywords: Formulation of the theorem; Extension of linear functionals; Riesz’s contributions; Helly’s contributions; Hahn and Banach’s contributions; F.Murray contributions.

References

  1. Banach, S. Sure les operations dans les ensembles obstraits et leur application aux e’quatuations     integrates. Fund Math 1923;3:133-181.
  2. Banach S. Sur le probleme de le mesure, Fund Math 1923;4:7-33.
  3. Hahn H., Ber Forgen linear operationen, Monatsh. Math Und Phys 1922;32:1-88.
  4. Banach S. The’oriede operations line’aires, Chelsea, New York, 1932.
  5. Murray F. Linear transformations in Lp. Trans Amer Math Soc 1936;39:83-100.
  6. Bohnemblust H, Sobczy A. Extensions of functionals on complex linear spaces, Bull Amere Math Soc 1938;44:91-3.
  7. Bachman G, Narici L. Functional analysis, Academic press, New York, 1966.
  8. Balakrishman A. Applied functional analysis (2nd ed.), Springer-Verlag, New York, 1981.
  9. Feinberg M, Lavine R.  Thermodynamics based on the Hahn-Banach theorem: the clausius inequality. Arch Rat Mech Anal 1983;82:203-93.
  10. Garabedian P, M. Schiffman. On solution of partial differential equations by the Hahn-Banach theorem. Trans Amer Math Soc 1954;76:288-99.
  11. Koni’g H. On some basic theorems in convex analysis in modern applied mathematics: Optimization and operations research, North-Holland, New York, 1982.
  12. Leigh J. Functional analysis and linear control theory, Academic press, New York, 1980.
  13. Narici L, Beckenstein E, Bachman G. Functional analysis and valuation theory, Marcel, Dekker, Ney York, 1971.
  14. Narici L. and Beckenstein E., Topological vector spaces, Marcel Dekker, New York, 1985.
  15. Rolewicz S. Functional analysis and control theorey, Reidel, Warsaw, 1987.
  16. Riesz F. Certain syste’mes de’quations fonctionelles et l’approximation des fonctions continues. Academic des sciences, Paris, Comptes Rendus 1910;15:674-77.
  17. Riesz F. Sur certain syste’mes singuliers d’e’quations inte’grates, Ann Sci E’colo Norm 1911;28:33-62.
  18. Helly E. Ber linearer funktional loperationed, sitzungsber. Der math Naturwill Akad Der Wiss Wien 1912;121:265-97.
  19. Helly E. Ber systeme linear Gleichungen mit unendlich vielen unbekannten. Monatsh Fur Math Und Phys 1921;31:60-91.
  20. Banach S. Sur les fonctionelles line’aires, Studia Math 1929;1:211-16.
  21. Hahn H. Ber linearer Gleichungs systeme in linearer. Reine Anges Math 1927;157:214-29.
  22. Minkowski H. Geometric der Zahlen, Teubner, Leipzig, 1896.
  23. Sehie P. some equivalents of Hahn- Banach theorem. J Fixed Point Theory 2019;2019:13.
  24. Horvath C. Some of sion’s heirs and relatives. J Fixed Point Theory Appl 2014;16:385-409.
  25. Ben-El-Mechaeikh H., Intersection theorems for closed convex sets and applications. Missouri J Math Sc 2015;27:47-63.
  26. Park S. Applications of convex-valued KKM maps, RIMS, 2018.
  27. Nyman K. L. and Su, F. E., A Borsuk- Ulam equivalent that directly implies Sperner’s lemma. Amer Math 2013;120:346-354.
  28. Park S., A panoramic view of the realm of Ky Fan’s Lemma, Nonlinear Analysis and Convex Analysis, Chitose, Hokkaido, 2017.
  29. Burgin M. On the Hahn-Banach theorem for hyperfunctionals (Russian). Dokl Akad Ukrain 1991;21:9-14.
  30. Ding, G. The Hahn-Banach extension property in not locally convex topological linear spaces (Chinese). Adv Math (china), 1992;21:427-31.
  31. Plewnia J. Ageneralization of the Hahn- Banach theorem. Ann Polon Math 1993;58:21-28.
  32. Ruan G. The dual Hahn-Banach theorem (Chinese). Natur Sci J Zingtan Uni 1992;14:52-7.
  33. Sorjonen P. Hahn-Banach extension properties in linear orthogonality spaces. Funct Approx Comment Math 1992;20:21-8.
  34. Su YF. The Hahn-Banach theorem for a class of linear functionals in probabilistic normal spaces and its applications (Chinese). Neimenggu Shida xuebao ziran kexue Ban 1990;15:16-22.