ISSN 2456-0235

International Journal of Modern Science and Technology

INDEXED IN 

​​​​​​​September 2019, Vol. 4, No. 9, pp 238-245. 

​​Orthogonality of Finite Rank Generalized Derivations

M. F. C. Kaunda, N. B. Okelo*, Omolo Ongati
School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology,P.O. Box 210-40601, Bondo-Kenya.

​​*Corresponding author’s e-mail: bnyaare@yahoo.com

Abstract

Let H be an infinite dimensional Hilbert space. In this paper, we employ operator techniques, polar decomposition, Halmos generalization formula and derivation inequalities to establish orthogonality in normed spaces. An operator A is hyponormal and B* is m-hyponormal if T is a generalized nilpotent hyponormal operator. Properties of operators in the closure of the range of the inner derivation have been used to establish orthogonality of finite rank derivations.

Keywords: Hyponormal operators; Generalized derivations; Commutator; Orthogonality; Finite rank.

References

  1. Akram MG. Best approximation and best co-approximation in normed spaces, thesis, Islamic university of Gaza; 2010.
  2. Alonso J, Benitez C. Orthogonality in normed linear spaces: a survey.I. Main properties, Extract Math  1988; 3(1):1-15.
  3. Alonso J, Benitez C. Orthogonality in normed linear spaces: a survey.II. Relations between main orthogonalities. Extract Math 1989;4(3):121-31.
  4. Bachir A. Generalized derivation, SUT Journal of math 2004;40(2):111-6.
  5. Bachir A. Range-kernel orthogonality of generalized derivations. Int J Math 2012;5(4):29-38.
  6. Benitez C. Orthogonality in normed linear spaces: a classification of the different concepts and some open problem, Universidad de Extremadura-Badajaz Spain; 2017.
  7. Berberian SK. A note on hyponormal operators. Pacific J. Math 1962;12(206): 1171-75.
  8. Bhuwan OP. Some new types of orthogonalities in normed spaces and application in best approximation, Journal of Advanced College of Engineering and Management 2016;6:33-43.
  9. Birkhoff, G., Orthogonality in linear metric spaces, Duke math. J., 1, (1935), 169-172.
  10. Bouali S, Bouhafsi Y. On the range- kernel orthogonality and p-symmetric operators. Math Ine Appl J 2006;9:511-9.
  11. Carlsson SO. Orthogonality in normed linear spaces, Ark. Math 1962; 4: 297-318.
  12. Halmos PR. A Hilbert space problem book, Van Nostrand. Princeton; 1967.
  13. Hawthorne C. A brief introduction to trace class operators, Department of mathematics, University of Toronto; 2015.
  14. Okelo NB. Certain properties of Hilbert space operators, Int J Mod Sci Technol 2018;3(6):126-32.
  15. Okelo NB. Certain Aspects of Normal Classes of Hilbert Space Operators. Int J Mod Sci Technol 2018; 3(10):203-7.
  16. Okelo NB. Characterization of Numbers using Methods of Staircase and Modified
  17. Detachment of Coefficients. International Journal of Modern Computation, Information and Communication Technology 2018;1(4):88-92.
  18. Okelo NB. On Characterization of Various Finite Subgroups of Abelian Groups. International Journal of Modern Computation, Information and Communication Technology 2018;1(5):93-8.
  19. Okelo NB. On Normal Intersection Conjugacy Functions in Finite Groups. International Journal of Modern Computation, Information and Communication Technology 2018;1(6):111-5.
  20. Okwany I, Odongo D, Okelo NB. Characterizations of Finite Semigroups of Multiple Operators. International Journal of Modern Computation, Information and Communication Technology 2018;1(6):116-20.
  21. Ramesh R, Mariappan R. Generalized open sets in Hereditary Generalized Topological Spaces. J Math Comput Sci 2015;5(2):149-59.
  22. Saha S. Local connectedness in fuzzy setting. Simon Stevin 1987;61:3-13.
  23. Sanjay M. On α-τ-Disconnectedness and α- τ-connectedness in Topological spaces. Acta Scientiarum Technol 2015; 37: 395-399.
  24. Shabir M, Naz M. On soft topological spaces. Comput Math Appl 2011;61:1786-99.