ISSN 2456-0235

International Journal of Modern Science and Technology

INDEXED IN 

​​​​​​​​​​​​​July 2018, Vol. 3, No. 7, pp 149-160. 

​​​Kinetic Modeling and Evaluation of Optimal Growth, Lipid Enhancement and Harvesting Techniques of Green Microalgae Scenedesmus species

G. Baskar*, I. Aberna Ebenezer Selvakumari
Department of Biotechnology, St. Joseph’s College of Engineering,Chennai – 600 119. India.
​​*Corresponding author’s e-mail: basg2004@gmail.com

Abstract

Scenedesmus species is a unique photosynthetic microalgae accumulates large quantity of lipids. In the present work, Scenedesmus was grown in 3.5 L photobioreactor using modified BBM under optimal conditions. Various algal harvesting techniques includes centrifugation, sedimentation, autoflocculation, chitosan flocculation and flocculation by pH adjustment were evaluated. The highest microalgal biomass yield of 0.9 g/L was observed at pH 10 when the dosage of bioflocculant chitosan of 0.1 g/L. Intracellular lipid content accumulation was evaluated using lipid extraction methods such as Folch, Bligh & Dyer and Modified Bligh & Dyer methods. The most significant increase in lipid content 58% of dry cell weight (dcw) was recorded under nitrogen deficient medium. The kinetic of the growth and lipid production of Scenedesmus sp., were studied under the nitrogen and phosphate deficient conditions using logistic, Luedeking–Piret and Logistic incorporated Leudeking-Piret model.

Keywords: Scenedesmus; Photobioreactor; Bioflocculant; Kinetics; Lipid enhancement

References

  1. ​Alabi AO, Tampier M, Bibeau E. Microalgae technologies and bioprocesses for bioenergy production in British Columbia: current technology, suitability & barriers to implementation. Report to the British Columbia Innovation Council. 1-88;2009.
  2. Demirbas A, Demirbas F. Importance of algae oil as a source of biodiesel. Energ Convers Manage 2011;53:163-170.
  3. Behrens PW, Kyle DJ. Microalgae as a source of fatty acids. J Food Lipids 1996;3:259-272.
  4. Illman AM, Scragg AH, Shales SW. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 2000;27:631-635.
  5. Liu ZY, Wang GC, Zhou BC. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 2008;99:4717-4722.
  6. Mandal S, Mallick N. Microalgae Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 2009;84:281-291.
  7. Gudin C, Thepenier C. Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Process 1986;6:73-110.
  8. Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, Li A. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 2012;110:496-502.
  9. Harith ZT, Yusoff FM, Mohamed MS, Shariff M, Ariff A. Effect of different flocculants on the flocculation performance of microalgae, Chaetoceros calcitrans cells. Afr J Biotechnol 2009;8:5971-5978.
  10. Csordas A, Wang JK. An integrated photobioreactor and foam fractionation unit for the growth and harvest of Chaetoceros spp. in open systems. Aquac Eng 2004;30:15-30.
  11. Lockwood CE, Bummer PM, Jay M. Purification of proteins using foam fractionation. Pharm Res 1997;14:1511-1515.
  12. Turker H, Eversole AG, Brune DE. Filtration of green algae and cyanobacteria by Nile tilapia, Oreochromis niloticus, in the partitioned aquaculture system. Aquaculture 2003;215:93-101.
  13. Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L. Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs – a summary. Aquac Res 2000;31:637-659.
  14. Price C, Reardon E, Guillard R. Collection of dinoflagellates and other marine microalgae by centrifugation in density gradients of a modified silica sol. Limnol Oceanogr 1978;23:548-553.
  15. Avinmelech Y, Troeger BW, Reed LW. Mutual flocculation of algae and clay: evidence and implications. Science 1982;216:63-65.
  16. Rawat I, Kumar RR, Mutanda T, Bux F. Dual role of microalgae: phycoremediation of domesticwaste water and biomass production for sustainable biofuels production. App Energ 2011;88:3411-3424.
  17. Jena J, Nayak M, Panda HS, Pradhan N, Sarika C, Panda PK, Rao BVSK, Prasad RBN, Sukla LB. Microalgae of Odisha Coast as a potential source for biodiesel production. World Environ 2012;2:12-17.
  18. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 2010;14:217-232.
  19. Babel S, Takizawa S. Microfiltration membrane fouling and cake behavior during algal filtration. Desalination 2010;261:46-51.
  20. Divakaran R, Sivasankara Pillai VN. Flocculation of algae using chitosan. J Appl Phycol 2002;14:419-422.
  21. Folch J, Lees M, Sloane-Stanley GM. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J Biol Chem 1957;226:497-509.
  22. Bligh EJ, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Chem 1959;37:911-917.
  23. Salama ES, Kim HC, Abou-Shanab RAI, Kyu ji M, Kwan-oh Y, Kim SH, Jeon BH. Biomass, lipid content, and fatty acid composition of fresh water Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst Eng 2013;36:827-833.
  24. Park JK, Craggs RJ, Shilton AN. Waste water treatment high rate algal ponds for biofuel production. Bioresour Technol 2011;102:35-42.
  25. Uduman N, Qi Y, Danquah MK, Hoadley AF. Marine microalage flocculation and focused beam reflectance measurement. Chem Eng J 2010;162:935-940.
  26. Yang JS, Rasa E, Tantayotai P, Scow KM, Yuan HL, Hristova KR. Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresour Technol 2011;102:3077-3082.
  27. Gaden EL. Fermentation process kinetics. Biotechnol Bioener 2000;67:629-635.
  28. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell 2009;8:1856-1868.
  29. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic Cell 2010;9:1251-1261.
  30. Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson Y, Peltier G. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 2011;11:7.
  31. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 2011;102:71–81.
  32. Bajza Z, Hitrec P. Influence of different concentrations of Al2(SO4)3 and anionic polyelectrolytes on tannery wastewater flocculation. Desalination 2004;171:13–20.
  33. Packer A, Li Y, Andersen T, Hu Q, Kuang Y, Sommerfeld M. Growth and neutral lipid synthesis in green microalgae: a mathematical model. Bioresour Technol 2011;102:111–117.
  34. Chisti Y. Biodiesel form microalgae beats bioethanol. Trends Biotechnol 2008;26:126–131.
  35. Smith VH, Sturm BS, Denoyelles FJ, Billings SA. The ecology of algal biodiesel production. Trends Ecol Evol 2009;25:301-309.